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LETTER TO THE EDITOR 

On the equivalence of the Sompolinsky and Parisi solutions 
for the SK spin glass 

David Elderfield 
Solid State Theory Group, The Blackett Laboratory, Imperial College, London SW7 2BZ 

Received 19 March 1984 

Abstract. Using simple properties of the Parisi overlap function P ( q )  we demonstrate that 
the Parisi and Sompolinsky solutions are entirely equivalent both for Ising and isotropic 
spin glasses. Studying the notorious Potts model, we show that existence of 8(q) leads to 
important new criteria for the physical solutions of a replica approach, which supplement 
those based on the familiar stability analyses. 

Studying the Sherrington-Kirkpatrick (1975, SK) spin glass model, we have in recent 
years learnt a great deal about the ideal spin glass phase. Replica symmetry breaking, 
once mysterious, is now known to be directly associated with the existence of a large 
number of metastable states (see e.g. Parisi 1983). At present the solutions of Parisi 
(1979) and Sompolinsky (1981), which are known to be closely related (de Dominicis 
er a1 1982), dominate the literature. In this communication we demonstrate that both 
for Ising and isotropic spin glasses the two approaches are entirely equivalent. Our 
prodf hinges on three simple properties. These are the gauge invariance of the 
Sompolinsky free energy (Sompolinsky 198 l), the monotonicity of the spin glass order 
parameter q ( x )  (Sommers 1983) and finally the positivity of the Parisi overlap function 
(Parisi 1983, Elderfield 1984). The novelty of our treatment lies in the use of the overlap 
function to prove the monotonicity of dA/dq and whence complete the partial proof 
of de Dominicis et a1 (1982) and de Dominicis (1983). For general isotropic spin 
glasses we argue, by explicit reference to the notorious p-state Potts spin glass (Elderfield 
and Sherrington 1983), that the existence of a well defined Parisi overlap function 
represents an important new criterion for physical spin glass solutions. 

We first consider the Ising SK model which is defined by the Hamiltonian 

N N x=-+ c Jvsisj-h c SI 
I J =  I i =  I 

where the spins {S i }  take values f 1 and the {.Iv} are quenched random exchanges of 
infinite range with zero mean and variance ( J 2 /  N). Using the dynamical approach of 
Sompolinsky (198 1) or the associated replica symmetry breaking scheme (de Dominicis 
et a1 1982), the free energy F per spin in the thermodynamic limit may be formulated 
in terms of the extrema1 problem 

0305-4470/84/0905 17 +04$02.25 @ 1984 The Institute of Physics L517 



L518 Letter to the Editor 

where the Sompolinsky functional F,({q(x), A(x)}) is defined as follows: 

+log(cosh(PH)) + f p 2  dx A’(x)[M],) lo‘ 
in terms of an effective field H 

H =  h +zJq(o)+ dx (Z(X)J~(X)-PA‘(X)[M]~)  

and effective magnetisation M 

(3) 

(4) 

M = tanh ( P H ) .  ( 5 )  

Here a bar denotes averaging over the gaussian random variables z(x), x E (0, l), z for 
which - - 

(6) 
2 z(x) = 0 = 2, z(x)z(x’) = S(x - XI), z = 1, 

whilst [. . .Ix defines a restricted average over the variables z(y), y > x. Units have been 
chosen such that J = 1. In this form one may see that F({q(x), A(x)}) is invariant 
under arbitrary reparametrisations (a gauge symmetry) 

x + Y = f W ,  f monotonic. (7) 

Of course all the physical derived functions such as the magnetic susceptibilities are 
gauge invariant. 

To recover the Parisi functional Fd{q(x)}) from the above, it is well known (de 
Dominicis er al 1982) that we should restrict attention to extrema (2) satisfying the 
relation 

A’(x) = - Xq’(X). (8) 
So, given a solution {A(x), q(x)} of the Sompolinsky equation (2), it is natural to ask 
if a gauge transformation (7) exists which casts it into the Parisi form (8). If such a 
transformation exists then the solutions are entirely equivalent (at least at the mean 
field level). 

Now to discover if such a transformation exists we first observe that variations of 
(2) with respect to A’(x) imply that at an extremum 

- 
q(x) = [MI;. (9) 

If we differentiate now with respect to x it is then clear that q(x) is a monotonic 
increasing function: 

We thus deduce from (8), (10) that the transformation 

x + y = dA(x)/dq (1 1) 

is a proper gauge transformation connecting the Sompolinsky and Parisi solutions 
provided the derived function 

g ( q )  = dA/dq (12) 
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is monotonic. To prove that g(q)  satisfies this criterion we study the Parisi overlap 
function P(q,  { J i j } )  (Parisi 1983, Elderfield 1984). This distribution function, which 
describes the overlap between distinct metastable states s with magnetisation { m f } ,  

is closely related to the spin glass order parameter Qap in replica space (SK) via 

where p ( s )  is the occupation probability for a state s, the operator L;' denotes an 
inverse Laplace transform and - now refers to a disorder average. For matrices QaP 
appropriate to the Sompolinsky solution (de Dominicis er a1 1982), (14) may be 
evaluated using ( IO)  and the simple identity 

We find (Elderfield 1984) that P ( q )  is of the form 

P(q)= (-dA/dqlS(q- q*)+(1 +dA/dq)a(q-qEA)-d2A/dq2 (16) 

q* = min{q(x)), qEA = max{q(x)). (17) 

where the gauge invariant parameters q*, qEA are defined by 

As usual qEA is precisely the Edwards-Anderson order parameter. Inspecting (16) we 
now see directly that the positivity of the distribution F ( q )  ensures that g(q)  (12) is 
monotonic. This completes the proof. 

We may easily extend the above treatment to deal with all isotropic spin glasses, 
including for example the Heisenberg model in zero field and the notorious p-state 
Potts model (Elderfield and Sherrington 1983). It is interesting to note that the Potts 
model is peculiar, for as one approaches the transition from the ordered phase 

(-dA/dq)-(p-2)/2 (18) 
if the transition is continuous (9, A-0 as T -  TJ .  Clearly if p > 4 this expression 
cannot be reconciled with the canonical form (16) for P ( q )  since it violates the natural 
constraints 

in the replica symmetry broken (q* f &A) spin glass phase ( T <  TJ .  To sidestep (18) 
we presented in Elderfield and Sherrington (1983) a curious discontinuous transition, 
which unhappily, although it does satisfy a few simple stability criteria, is now known 
to give an overlap function F ( q )  which again violates (19). A new solution (approach) 
to the Potts spin glass is therefore urgently needed. 

To conclude we have demonstrated that the existence of a well defined Parisi 
overlap function is sufficient to ensure that the Parisi and Sompolinsky solutions lead 
to precisely the same physics for both the Ising model and more general isotropic 
systems. In addition we have shown that this new criterion supplements the more 
familiar stability tests, proving that the Potts spin glass is a rather curious animal. 
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New Parisi/Sompolinsky style solutions are necessarily discontinuous if (1 8) e? seq is 
to be avoided. 

I would like to thank Professor D Sherrington for valuable discussions and the SERC 
for financial support. 
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